8.1.2 FUCK THE SYSTEM

In Chapter 7 I argued that the mix up between social systems and oper-
ating systems was not just an arbitrary overlap or accident. Thus behind
the RO versus RW cultural dichotomy of Lessig, using file system permis-
sions as an analogy to describe cultural processes, have briefly explained
that computer operating systems and their networking can provide dif-
ferent models of social organisation, with different levels of transparency
and policing, from small-scale emulations of property-less pseudo-secret
societies to panopticonesque chroot jails. This led me to use the term
sandbox to refer to these different architectures that have increasingly
relied on techno-legal templates, and most notably in the context of this
text, those derived from free and open source software licensing. If this
approach allowed me to create a counter argument—by simply looking
at the ways cultural expressions are produced and not just accessed—to
the trivial pro free culture binary RO versus RW, I now want to discuss
the refusal to engage with these sandboxes and their techno-legal fabric,

when they create a conflict of belief, values, or ideas.

To do so, in this section I will examine the work from French noise
and experimental musician and computer programmer Yves Degoyon.?
If some are busy pondering about file permissions, Degoyon is more in
favour of simply getting rid of the files and the whole OS at the same

time. This is the basis for his performance rm -rf/* :: f*** the system—or

28 The text from this subsection is based on a semi-structured email interview with
Degoyon, that took place during April 2015 and March 2016.

328

/bin/rm -rf/* :: f*** the system—in which the musician performs using an
audiovisual noise generating Pd patch, while at the same time opening up
a terminal on his computer and runs the command /bin/rm -rvf /%, that
will in effect recursively force-remove every file and directory under the
root file system, while the names and paths of said files and directories
are printed on the terminal of his GNU/Linux distro. Eventually with the
file system emptied and only a handful of programs and data left in the
RAM of the machine, the computer crashes, sometimes with unexpected

behaviour, and with it ends the performance.

Degoyon told me that the work is mainly an experiment in chaos and
the instability of computer systems. However he also admits that the ti-
tle hints obviously towards a double meaning, and the action that needs
to be taken to get rid of a system before it alienates you. Degoyon grew
up listening to post-punk bands such as Wire, Gang of Four, and This
Heat, which while having widened the cultural scope of punk, have done
so, according to Degoyon, notably through the generalisation of punk’s
DIY spirit. Here the punk connection can be deceptive, because the title
of the performance is to be understood differently from the way English
punk singer Johnny Rotten claimed to have fucked up the system, when
he was part, with other proto punks and early punks, of what has been
described as a working class Bohemia.?’ Instead, a more abiding connec-
tion would be the 1967 pamphlet Fuck the System by American political

and social activist Abbie Hoffman, a text filled with tips and advice to

2% Simon Frith, Sound Effects: Youth, Leisure and the Politics of Rock (London: Constable,
1987), 266.

329

organise and survive in the “city jungle” and the development of a “freer
more humanistic” society.*® So it should not be surprising that in his ap-
proach, Degoyon feels more connected to the early days of British collec-
tive and arnarcho-punk band Crass, which he often quoted and referred
to during heated mailing list discussions, where the link to avant-garde
art and anarchist political movements was not a trivial appropriation as
it was in other early punk bands, but was more seriously explored via di-
rect action and zine publishing, so as to advocate animal rights, anti-war,

anti-consumerism, vegetarianism, environmentalism and feminism.3!

When Degoyon started to use and write free software, it is through
this art punk anarchist inspiration that he engaged with this particular
digital form of knowledge sharing. During our exchange, he refereed to
the Spanish video collective R23,% founded by artist and computer scien-
tist Lluis Gomez i Bigorda, as an example of introducing such elements
into media art practices. Degoyon contributed to R23 DIY streaming me-
dia projects and network mapping in the early noughties, and admitted
to enjoying the perturbation generated with the introduction of “some

spirit of activism in the polished world of media art,”** at a time where

3% The text also paved the way for a better known work by Hoffman, the 1971 Steal

this Book, which I mentioned in Chapter 2 in connection to open design and DIY.

Of course Hoffman is not the only connection to be made here. Sixties anarchist

guerrilla street theatre group the Diggers were early explorers of ideas of anonymity,

freedom of association, and societies free from private property, using a wide range

of practices from direct action and art happenings, to the publication of leaflets and

manifestos. See Emmett Grogan, Ringolevio : A Life Played for Keeps (1972; repr.,

New York: New York Review Books, 2008).

See Johan Kugelberg, In All Our Decadence People Die: An Exhibition of Fanzines

Presented to Crass Between 1976 and 1984 (New York: Boo-Hooray, 2011).

32 R23.cc, “r23.cc; 2005, https://web.archive.org/web/20050312155147/http://r23.cc/
community/.

33 Email to author, April 8, 2015.

31

330

the mix of free software and art offered a self-organised and decentralised
alternative to artistic media labs.?* However, what was first perceived as
an ideological alignment between Degoyon’s beliefs and the technolog-
ical environment he was contributing to, unfortunately quickly turned
into something very illustrative of the alienation expressed in his perfor-

mance.

One of the software project actively developed by Degoyon at the time
was PiDiP,* which stands for PiDiP is Definitively into Pieces, a BSD-
style licensed Pd external that brings extra video processing capabilities
and builds upon the GPL’ed Pure Data Packets (PDP) Pd video process-
ing objects by Belgian software and hardware developer Tom Schouten,*
and also sharing some code with GPL’ed real-time video effect software
EffecTV, originally developed by Japanese programmer Kentaro Fukuchi.
But two events made Degoyon question the relationship between his po-
litical views and free and open source software production. He explained
to me that the first event was a conversation with a CCTV company in
2004, that was present in an international meeting of activists in Switzer-
land, and that was interested in using free software technology for motion
detection. The second event occurred at a free software meeting in Brazil
in 2005, where representatives from the army were assessing the viabil-

ity of using free software in their surveillance systems. Degoyon told me

34 See Annet Dekker, Angela Plohman and Irma Foldényi, “Interview with Dave Grif-
fiths, Aymeric Mansoux and Marloes de Valk,” in A Blueprint for a Lab of the Future,
ed. Angela Plohman (Eindhoven: Baltan Laboratories, 2011).

3 See Yves Degoyon, “PiDiP Is Definitely in Pieces,” 2011, http://ydegoyon.free fr/pidip.
html.

36 Tom Schouten, “Untitled Page,” 2012, http://zwizwa.be/pdp/.

331

that he obviously could not accept that, and was the reason he first first
decided to add a clause to his BSD-style license “NOT FOR MILITARY OR
REPRESSIVE USE !!!”, and later on take a more radical step by releasing

PiDiP under his own license in 2010:

to cut with all legal blah-blah, this license will be made short.

the code published here can be studied, modified, used by anyone
that provides all the original credits and sources in derivative
projects.

there are restrictions on its use, it cannot be used for :

« military amd/or repressive use

« commercial installations and products

« any project that promotes : racism, nationalism, xenophobia,
sexism, homophobia, religious hatred or missionarism .. (ex-
pandable list)

this is not a standard license.

sevy & authors.?’

These two changes in PiDiP’s licensing terms are an interesting case
of fucking up the sandboxing system. Degoyon, who told me he had
originally chosen a copyfree® BSD style license because it was like Pd’s
own license, was in fact releasing a software containing an assortment
of code from copyleft’ed EffecTV, bits and bytes from other sources and
collaborations, and also his own code written from scratch. By initially
releasing PiDiP with a non-copyleft non-GPL compatible license and yet

using some copyleft’ed parts, he was breaking the GPL and misusing the

7 LICENSE.txt file from the PiDiP CVS repository, revision 1.1.1.1, commitid:
MR5avkuVSyEPgbZ, 2010-12-06 06:31:45. The typo will be fixed with commit
a0zDtQZu7yTgVL9v, in February 2011 for version 1.2.

For an an explanation on copyfree licensing see Chapter 5, The Double Misunder-
standing with Copyleft.

38

332

copyright of others. A GPL-respectful way to publish PiDiP should have
been for instance either under the GPL, or as two collections of source
files, the GPL modified ones under the GPL and the others under the
BSD style license or else, assuming Degoyon did not use other chunks of
source code licensed differently, in which case further fragmentation of
the software would have been necessary in case of license incompatibil-
ities. But Degoyon cared little about that fact and in 2006 stated on the
Pd mailing list, in a very art punk anarchist way, that people should not
forget that PiDiP contributors like to “confuse lawyers and boring people
first”*® Funnily enough, the original mis-licensing—when PiDiP was dis-
tributed as BSD yet including GPL code from EffecTV—did not prevent
the software to be successfully validated by FSF employees and listed in
2003 by the FSF directory with other useful free sofware—as I discussed
earlier in Part 2—which shows that traceability and transparency in free

and open source software has its limits.

Regardless of Degoyon’s little interest in respecting licensing terms—a
situation which shows some ressemblance with Stallman’s early EMACS
days where code circulation was more important for the hacker than dili-
gent respect of copyright laws*’—was an important figure of the Pd com-
munity, whose software was used by several artists and packaged or dis-
tributed by other developers. However, this started to change in 2005
when the licensing issue was brought up in the Pd mailing lists. The is-

sue dragged on for years with extremely heated discussions on the user

% Yves Degoyon, “[PD-Ot] Pidip Inherits Gnu Gpl from Effectv;’ 2006, https://lists.
puredata.info/pipermail/pd-ot/2006-01/001377.html.
40 See Part 1.

333

and developer lists of the software. Degoyon’s contributions to the de-
bate tended to add oil to the fire as he explicitly grounded his refusal
to change his license based on political motivations—with even more oil
poured when he started to change the BSD license into a non-copyfree
non-military license—whereas those asking him to conform acted as a
sort of neighbourhood watch system, trying to enforce the cyber consti-
tution of the Pd sandbox. I use the words neighbourhood watch here,
because in fact only Kentaro Fukushi, and possibly other contributors of
EffecTV, were the ones who could require their licensing to be enforced.
As it turned out, Degoyon and Fukushi had already met on several occa-
sions previously, and the EffecTV author knew of PiDiP and appreciated
the fact that his work had been ported to Pd. His silence on the mis-
licensing matter may have seemed to indicate he cared little about the po-
tential licensing problem with PiDiP. However, as Degoyon was further
pushed in to a corner within the Pd community, which in turn led to the
radicalisation of his licensing strategy, PiDiP started to break more con-
stitutive mechanisms of other sandboxes, such as operating systems like
Debian, or free and open source software hosts like SourceForge. Sim-
ply put, by means of TOS, social contracts, or other usage agreements,
these platforms and operating systems can implement their own defini-
tion of software freedom, which help decide which licenses they allow,
ultimately shaping the software culture they distribute. PiDiP’s new li-
cense was incompatible with many of such definitions. Eventually PiDiP

became, in 2010, a software non grata removed from the Pd repositories

334

and distributions.*! At time of writing, PiDiP, the impossible copypunk
source code, only exists in a limbo of various repositories outside and
disconnected from the Pd community, but it is still listed in the EffecTV

project links as well as in the FSF free software directory.

Within the free cultural techno-legal template, the practice and inten-
tion that led to the creation of PiDiP, a software that grew organically
from the encounter of the author with other artists and developers—and
the source code they wrote, notably within the projects of the R23
collective—became incompatible with its technical and legal framework.
It challenged the definition of freedom carried by the sandbox it was
born within, and illustrated the non-trivial interaction between the
changes through the years of an author’s thoughts, the fluidity of the
digital medium his creation was written in, and the rigidity of its legal
framework. In such a situation, PiDiP, published by a rather proud
outlaw,*? nonetheless found a deadlock and the execution of its legal
instructions became eventually incompatible within the system it was
developing, as opposed to its perfectly running software instructions.
This example shows once again the strength of the techno-legal template,
and its dual level of interpretation by machines, and humans, initially
discussed in Chapter 1. To be sure, Degoyon’s stand should not be
marginalised or neglected because it was the response of an artist in

the context of a niche software community. In fact, similar responses

1 This removal was effective with commit r14502 from the Pure Data SVN code repos-
itory, which motivated Degoyon to start hosting his own public code repository on
giss.tv and change the license even more, as discussed previously.

42 In reference to Yves Degoyon, “[PD] Percolate,” 2007, https://lists.puredata.info/
pipermail/pd-list/2007-03/047953.html.

335

and critiques towards free and open source projects have also been
articulated notably by Felix von Leitner, a German IT security expert

and ex-member of the Chaos Computer Club:

This is what we get when our free software licenses lack
a ‘not for military purposes’ clause: DARPA presents a
weapon control system on the basis of Android tablets http:
//www.darpa.mil/NewsEvents/Releases/2015/04/06.aspx. Linux is
now killing people.*?

More recently, in 2015, one of von Leitner’s own GPL licensed free soft-
ware projects, dietlibc, a popular lightweight C standard library,** was
shown to have been used in products sold by Hacking Team, the Italian
Information Technology company specialised in providing corporations
and governments with intrusion and surveillance technology. Next to
the breach of the GPL copyleft, this situation further prompted Leitner to
call for a NOMIL/NOINTL license, and started to put in motion a modifi-
cation of the AGPLv3 as a foundation for such a license.*® von Leitner’s
effort is not singular, and there has been in the past several projects that
became non-free and non-open source software, in spite of the availabil-
ity of the source code, simply because they used statements,* or licens-

ing techniques that exclude military usage like the Peaceful Open Source

3 ‘Das haben wir jetst davon, dass wir in unseren freie-Software-Lizenzen keine

“nicht fiir militdrische Anwendung”-Klausel haben: DARPA prisentiert ein Waffens-
teuerung auf Basis von Android-Tablets. Linux totet jetst Menschen.” Translation Flo-
rian Cramer. Felix von Leitner, “Fefes Blog,” 2015, https://blog.fefe.de/?ts=abda600a.
Felix von Leitner, “diet libc - a libc optimized for small size,” 2016, https://www fefe.
de/dietlibc/.

4 Pelix von Leitner, “Fefes Blog,” 2015, https://blog.fefe.de/?ts=ab645846.

% See Roedy Green, “Non-Military Use Only, 2017, http://mindprod.com/contact/

nonmil.html.

44

336

License.?’

PiDiP, whose name indeed announced its demise, precisely shows
what happens when the license as community law take over the values it
was thought to be defending. Accepting to use a specific license against
one’s own beliefs brings the risk of creating cognitive dissonance,
and Degoyon avoided this by putting his beliefs before the sandbox’s
rules when he noticed the contradiction created by the situation. But
even though passion and affects are crucial in creating allegiance to
democratic values,* they must be removed from the rationalised model
of free culture for the latter to operate smoothly, and could explain why
some participants of free and open source projects present their work
detached from political intentions.*” This is not just an issue of social
dynamics within small communities, but it is also visible in the way
the infrastructures that support free culture operate. To give a short
example, in 2009, the jsmin-php software was banned from Google Code
because the software had inherited the license of jsmin.c it was based on,
a license that was a modified version of the free and open source software
MIT license. The modification was one line stating “The Software shall
be used for Good, not Evil”, which made the software non-free and gave
the “Don’t be evil” company a reason to exclude the code from its free

and open source software hosting platform.”® Interestingly enough, and

47 Linkesh Diwan, “Peaceful Open Source License,” 2014, https://web.archive.org/web/

20140924010836/http://wiseearthpublishers.com/sites/wiseearthpublishers.com/
files/Peaceful OSL.txt.

8 Mouffe, “For an Agonistic Model of Democracy (2000),” 199-200.

* Coleman, “The Political Agnosticism of Free and Open Source Software and the In-
advertent Politics of Contrast”

% See Ryan Grove, “JSMin isn’t welcome on Google Code,” 2009, http://wonko.com/

337

linking back to my earlier neighbourhood watch analogy, Google did
not scan their repository for non-compliant licenses, they were simply
informed by another user in the main discussion forum of the Google

Code virtual community.!

As shown with these examples, there is only a thin balance between
the free software Gemeinschaft emulation, and the implementation of a
cyber disciplinary society. Free culture in this context is far from being
the liberating and pluralistic tool it seemed to be, or to be more precise
and to refer to the first part of this thesis, | have shown with this example
that the aggregative and deliberative democratic models of free culture,
have risen at the cost of antagonism and radicalisation of cultural prac-
tices, by limiting rapid cycles of hegemonic and counter-hegemonic ef-
forts, that used to be more prominent during the chaotic era of proto-free
culture. As a result, free culture sandboxes become absolute democra-
cies in which not only artists such as Degoyon, but any participant in
fact, are effectively forbidden “to engage with a multiplicity of agonistic
democratic struggles to transform the existing hegemonic order,> be-
cause their software becomes a threat to a public space that according to
the defined free culture can only exist as a consensual thing, and that is

defined by certain parameters that rely on the exclusion of others.

post/jsmin-isnt-welcome-on-google-code.

>l Adam Goode, “jsmin-php not open source,” 2009, https://groups.google.com/forum/
#!topic/google-code-hosting/F8P680KPXAS.

52 Mouffe, “Cultural Workers as Organic Intellectuals (2008),” 215.

338

8.2 Fork the System

Next to complete obedience or complete resistance, one particular side-
effect of a free cultural mechanism that promotes the circulation of in-
formation over the context of its production and usage, allows a third

approach to engage with sandbox dynamics: forking.

Forking can be described as the process by which the source code of a
piece of software can be modified, so as to make, for instance, new soft-
ware integrating modifications, minor or major, that would not have been
accepted by the author(s) and community from which the fork stemmed,
or simply to explore transformations unforeseen by the original authors
of a work.”® The divergence of source code and the proliferation of con-
current versions of the same software is not specific to free and open
source software and became an important aspect of source code sharing
in the early days of UNIX , as it was discussed in Chapter 1. It has also
been argued that copyleft development could either deter forking moti-
vated by competition, and allow merging back at a later stage if forking
occurs.’* However, the rationalisation of source code sharing with the
creation of free and open source software licenses, can also be interpreted
as taking a radical path towards divergence, a “right to fork,”>® regardless

if open forms of developments are made mandatory as with copyleft li-

> For a general explanation regarding forking in free and open source software culture,
some historical references, and a case study with the Debian and Ubuntu operating
systems, see Benjamin Mako Hill, “To Fork or Not to Fork: Lessons from Ubuntu and
Debian,” 2005, https://mako.cc/writing/to_fork_or_not_to_fork.html.

> Andrew M. St Laurent, Understanding Open Source & Free Software Licensing (Se-
bastopol: O’Reilly, 2004), 171-73.

> Weber, The Success of Open Source, 159.

339

censes. In that sense license-assisted forking can be seen more as a liberal
remix-culture-oriented free culture approach, than a community-binding
copyleft mechanism. Both are in fact different materialisations of the
rules of software freedom. Due to the difference of context in which such
materialisation occurs—acquiring existing work versus contributing to
existing work—forking originally had as a result, a very bad reputation.
Yet, it has risen today to become a very important mechanism central in
the writing of free and open source software, in the age of connected ma-
chines and users, and an important component in sandbox dynamics and
underlying mechanics of the constant becoming in free and open source

software communities.

Before elaborating on the details of such a mechanism—notably with
the software git that I will introduce later in this section—I must first
briefly explain how forking has co-evolved with the different generations
of tools which have facilitated the writing of software. What is interest-
ing in this co-evolution is the apparent contradiction between the desire
to develop a very liberal approach to producing and distributing software,
but done so through the very techno-legal means and methods that will
later be feared by those defending such a liberal system. In particular,
libertarian computer programmer Eric S. Raymond, who famously artic-

ulated the negative consequences of forking:

Nothing prevents half a dozen different people from taking any
given open-source product (such as, say the Free Software Founda-
tions’s GCC C compiler), duplicating the sources, running off with
them in different evolutionary directions, but all claiming to be the
product.

This kind of divergence is called a fork. The most important char-
acteristic of a fork is that it spawns competing projects that cannot

340

later exchange code, splitting the potential developer community.>¢

Here it becomes clear that the fork is more than a threat to these com-
munities, it is a threat to the mechanism of reciprocity which is central
to the gift economy,” and which inspired Raymond to describe free and
open source software community as gift culture.®® Of course, as I ex-
plained previously in this third part, and regardless of the desires and
mechanisms of reciprocity put in place, it is to be expected that a sys-
tem deeply inspired by classic liberal dynamics will create competition
between different actors trying to maximise profit, whatever this profit
is, either financial or based on the free circulating information they can
access to. In that sense, forking can become a tool to accelerate compe-
tition. Raymond however seems to preemptively defuse the problem by
arguing that there is a discrepancy between what he calls the yield im-
plied by free and open source licenses, which according to him is only use,
and the yield of participation in the production of free and open source
software that is “peer repute in the gift culture of hackers, with all the

secondary gains and side-effects that implies.”>

In this context indeed, forks are therefore negative for the community
as they “tend to be accompanied by a great deal of strife and acrimony
between the successor groups over issues of legitimacy, succession, and

design direction”® The fork here is seen as a form of failure to reach con-

% Eric S. Raymond, “Homesteading the Noosphere,” First Monday 3, no. 10 (1998), http:
//firstmonday.org/ojs/index.php/fm/article/view/621/542.

>" Mauss, The Gift.

Raymond, “Homesteading the Noosphere”

% Tbid.

80 Eric S. Raymond and Guy L. Steele, “THE JARGON FILE, VERSION 4.2.2,” 2000, http:

341

sensus around a common techno-legal authority, that should in theory
satisfy all the inhabitants of the sandbox. But given its political power,
the threat of forking could also work as part of a strategy to influence the
direction of a project, and has been described as similar to a “ ‘vote of no

confidence’ in a parliament,’¢!

a convenient way to work around the ef-
fective vote-less rough consensus found in some of these communities.®?
Therefore in the early days of free and open source software develop-
ment, the fear of forking may have worked as a glue to assemble and
maintain large software community sandboxes, where the desire for lib-
eral and libertarian structures was nuanced by the necessity to maintain
cohesion in these world of techno-legal social systems, leading to a sort
of macro liberalism. Another account is to note that in certain cases, the
trademarking and other means of protecting the name of a project has
helped discourage the creation of competing projects.®* Lastly, it was
argued that the trading aspect of free and open source software devel-
opment shared resemblance with iterated games around reputation, and
thus the fear of forking introduces a reputation risk.%* Said differently, it
may have not been the threat of schism, name protection, or reputation,
that limited the proliferation of radical software freedom, that is fork-

ing, but simply that the act of forking took significantly more effort than

solving issues within an existing community. However, another expla-

//catb.org/jargon/oldversions/jarg422.txt, forked entry.

1 David A. Wheeler, “Why Open Source Software / Free Software (OSS/FS, FLOSS, or
FOSS)? Look at the Numbers!” 2015, https://www.dwheeler.com/oss_fs_why.html#
forking.

62 Stadler, Digital Solidarity, 39.

Andrew M. St Laurent, Understanding Open Source & Free Software Licensing, 173.

4 Weber, The Success of Open Source, 159.

342

nation could simply be that the development platforms available at the
time were simply not flexible enough to facilitate forking, therefore pre-
vented a more radical take on software freedom and the free circulation

of information.

In the history of software engineering, tools such as version control
systems (VCS), also known as revision control and source control, have
allowed developers to keep track of changes in software. When Marc].
Rochkind started research on VCS in 1972 at Bell Labs with the project
Source Code Control System (SCCS),% running both on IBM 370 OS and
PDP 11 UNIX, the idea to approach software development to reflect on the
continuous and concurrent nature of software engineering was deemed
radical,®® but it was not entirely new, because IBM had already been work-
ing on a way to facilitate and control software engineering with their 1968
CLEAR-CASTER system—the combination of the Controlled Library En-
vironment and Resources (CLEAR) and the Computer Assisted System
for Total Effort Reduction (CASTER)—so as to provide a unified program-
ming development support system and batch processing system. In the
CLEAR-CASTER system, changes to source were notably detached from
the actual source text to facilitate the keeping track of changes as well as
providing contextual documentation for the software.®’” These VCS and

others from the first generation, to borrow from Raymond’s classification

5 Marc J. Rochkind, “The Source Code Control System,” IEEE Transactions on Software
Engineering 1, no. 4 (1975): 369.

5 Tbid., 368.

67 John N. Buxton and Brian Randell, “Software Engineering Techniques,” Report on a
conference sponsored by the NATO Science Committee, Rome, 1969 (NATO Science
Committee, 1970), 5.3 Support Software for Large Systems.

343

of such tools,*® worked by sharing the same file system, but with the rise
of computer networks and remote access to computational facilities, VCS
eventually evolved to adopt a client-server model. This shift occured with
the Unix tool Revision Control System (RCS) created in 1982 by German
computer scientist Walter F. Tichy,*® first following a local data model,
the functionality of which was enhanced in 1985 by Dutch computer sci-
entist Dick Grune’® so as to facilitate collaboration across several users.
Grune’s work eventually led to the creation of the Concurrent Versions
System (CVS), that existed, not without some irony, as two concurrent

projects.’

As part of a client-server VCS like CVS, or its successor subversion
(SVN) introduced in 2000 to improve some of the flaws of CVS,”? the
code repository is commonly served from a single machine, the server,
that keeps track of all the changes in the source code. For instance, a pro-
grammer can use a VCS client software to retrieve changes made by other
programmers and which are stored remotely on a machine running the
VCS server software that serves and tracks changes in the central repos-
itory. The programmer can then make further modifications locally on
their personal machine, and eventually commit changes to the central

repository, granted they are allowed to do so by the server. It is not

6 Eric S. Raymond, “Understanding Version-Control Systems (DRAFT),” 2008, http://

www.catb.org/esr/writings/version-control/version-control.html.

Walter F. Tichy, “RCS—a System for Version Control,” Software: Practice and Experi-

ence 15, no.7 (1985): 637-54.

70 Dick Grune, “The relation between my CVS, Brian Berliner’s cvs and GNU CVS;”
1992, https://dickgrune.com/Programs/CVS.orig/CVS_BB_and_GNU.

! Tbid.

72 Michael Pilato, Ben Collins-Sussman and Brian Figpatrick, Version Control with Sub-
version (2002; repr., Sebastopol: O’Reilly, 2008), xiii—xiv.

69

344

difficult to see that there is a lack of balance in this control structure be-
cause developers can be denied access to the central repository. But it
also means, that getting access to the whole database, the history of the
project, is not trivial because all of this is handled on the server side.
On the other hand, because of this gated and centralised architecture, re-
questing access to a project VCS, to be trusted with such access, can only
be done by socially interacting with the community or group working
on the software. Changes to the system are therefore also scrutinised
and discussed within these same groups and communities, as access to
the main VCS repository of a project does not imply anything can be
committed. But it is important to note that once again, those in charge
of writing software within such environments are not necessarily those
able to change and modify such software environments, and the writing
of software can be done following many different participatory and man-
agerial models, often referred to as governance models within free and

open source software management discussions.”?

In 2005 Scottish artist, writer, and programmer Simon Yuill introduced
the concept and framework of Social Versioning Systems (SVS), used in
his social simulation game spring_alpha,’* where players are invited to
take part in an uprising to form an alternative society to that of the cap-
italist, normalising and disciplinary world they’ve lived in so far. Next

to traditional game mechanics derived from interactive fiction and open-

73 Ross Gardler and Gabriel Hanganu, “Governance Models,” 2013, http://oss-watch.ac.
uk/resources/governancemodels.

™ Simon Yuill, “SVS [about];” 2006, http://www.spring-alpha.org/svs/index.php?
content=about.

345

ended world simulation, the novelty of spring_alpha is that players were
able to re-write the code that runs the simulated world,” a process both
facilitated and tracked by SVS. SVS and spring_apha are both inspired
by, and illustrate well, the constitutive and social dimension of the free
software techno-legal templates that lead to the creation of sandboxes,
whereby rules can be theoretically challenged and modified following
different models of participation. One aspect of SVS in particular was
prompted at the time by the growing availability of tools to monitor,
visualise and further track changes within version control code reposi-
tories, as well as quantify and contextualise them. Looking back today
at the way the tracking tool provided by SVS pushed the idea of VCS as
a glue to bridge social systems with their techno-legal frameworks, it is
striking to see how some of the principles provided by this critical art
and research project announced, coincidentally, an age in which VCS are
nowadays combined and interleaved with discretised and “computable
orderings,”’® not however to reprogram the social systems they’re used
in—and this is the key difference—but rather to further order and control
software work and dominant modes of production, as best exemplified

with the social-coding platform GitHub.”

Indeed, if Yuill’s ideas were rooted in the understanding that the moral
and social aspects of work were not solely determined by technology,

as Coleman explained with her work on free software communities as

> Tbid.

76 Quinn DuPont and Yuri Takhteyev, “Ordering Space: Alternative Views of ICT and
Geography,” First Monday 21, no. 8 (2016), http://journals.uic.edu/ojs/index.php/fm/
article/view/6724/5603.

7 Tbid.

346

high-tech guilds,’® and therefore whose dynamics had the potential to be
internally contested and challenged with very rare occasions of forking,
this was not without counting on two aspects. The first is as I described
earlier with the two Pd examples, which showed that the immutability
of the legal fabric of these sandboxes in practice greatly limits counter-
hegemonic efforts. But most importantly here, the second aspect is that
such analysis and work were highly dependent on the state of all these
software frameworks that helped manage and control software produc-
tion. If client-sever models of version control, for instance, introduced
a great change and reinforced the role of governance models—a sort of
golden age for systems based on Raymond’s description of bazaar ver-
sus cathedral and benevolent dictatorship versus meritocracy’—the third
change in the history of such tools, which I will now introduce, is with-
out question the one that will exacerbate the tension between the two
approaches to software freedom that I have introduced in this section,
and as a consequence the tipping point that will change the way forking

was perceived thus far.

This third alteration is the replacement of client-server architecture
with that of distributed version control system (DVCS). With DVCS, there
is no more central repository, and no more fixed topology for the net-
worked organisation of software production. Because each DVCS is both
client and server, every copy of the project is a fork and the programmer

works first on their local copy before deciding to push which part of their

78 Gabriella Coleman, “High-Tech Guilds in the Era of Global Capital,” Anthropology of
Work Review 22, no. 1 (2001): 28-32.
7 Raymond, The Cathedral and the Bazaar.

347

changes and to which other repository. At first this model seems to sug-
gest a less rigid relation between the embedding of moral and social as-
pects of work in technology, because indeed in the case of DVCS it is up to
social conventions to shape the network topology of software production,
and this with extremely great flexibility, with the possibility of breaking
free from the more traditional models of governance. However when
several DVCS implementations—such as arch, bazaar, codeville, darcs, git,
mercurial—started to gain popularity in the mid-noughties they were not
perceived positively,®® precisely because “the very conveniences [DVCS]
provides also promote fragmentary social behaviours that aren’t healthy
for [free and] open source communities”! It is a threat because the his-
torical situation becomes suddenly inverted: forking takes less work and
effort than interacting with an existing community. Sending changes
back to other code repositories becomes optional, and depends on the
willingness to interact with other developers, and of course the willing-
ness of these to accept changes. Above all, DVCS shows that the old
assumption where “it will almost always be more economical for a po-
tential forker to try to get the technical changes he wants incorporated
into the existing code base [...], rather than to split off and try to create
a new community, 3 might have been wishful thinking, or at least needs

serious revision.

However, in the same way the success story of the Linux kernel project

80 Ben Collins-Sussman, “The Risks of Distributed Version Control,” 2005, http://blog.
red-bean.com/sussman/?p=20.

81 Thid.

82 Weber, The Success of Open Source, 160.

348

helped construct the nineties free and open source software narrative of
many programmers collaborating and working together, and became a
poster child for the bazaar and benevolent dictator model of free soft-
ware governance, the same project is at the centre of a shift in mentality
regarding forking. As mentioned in the previous part of this thesis, An-
droid, Google’s mobile operating system, relies on the Linux kernel, but
due to several issues that are not so relevant here,®* Google’s work on the
kernel was essentially done on a branch which grows further away from
its original source, with little to no possibility of merging back changes
and additions. In turn, the initial contributions, then abandoned, from
Google to the mainline source code repository were removed. The con-
flict was initially framed as a stereotypical situation were communication
is difficult but forking is easier, but what was new here, is that next to the
usual knee-jerk response of forking as a threat to communities and the re-
ciprocal blaming for which party was at the source of the situation, there
was a subtle shift in the perception of forking. Chris DiBona, American
software engineer and director of Open Source and Science Outreach at

Google, posted during the tense exchanges of 2010:

[...] this whole thing stinks of people not liking Forking. Forking is
important and not a bad thing at all. From my perspective, forking
is why the Linux kernel is as good as it is.3*

The rise of DVCS put in motion a process in which forking transformed

8 Steven J. Vaughan-Nichols, “Linus Torvalds on Android, the Linux Fork,” 2011, http:
//www.zdnet.com/article/linus-torvalds-on-android-the-linux-fork/.

8 Chris DiBona, “Greg Kroah-Hartman: Android and the Linux Kernel Community
(Comment),” 2010, https://Ilwn.net/Articles/372419/.

349

from vice to virtue. because in effect it offered a way for sandboxed com-
munities to go forth and multiply by following this radical materialisa-
tion of deregulated software freedom, and expanding the development of
the metacommunities, “sparsely or thickly connected populations of ob-
jects, users, producers”®, that surround code repositories. But this new
approach also launched into fame a web platform such as GitHub, in lead-
ing the self-coined trend of social coding, that sits at the cross-roads of
social networks, project managements tools, and revision control.®¢ On
GitHub, anyone is able to have several public git repositories, a popular
revision control system, and is given the ability to fork any other reposi-
tory by clicking on a button, simply called Fork. The button is enhanced
with a counter that reveals how many forks have been made of the given
repository, making explicit, within this platform, how forking ends up
as a popularity contest. Users of the platform are also able to contribute
back changes they make to their fork, to the parent repository, and em-
ploy a specific property of git, which allows them to cherry-pick changes
made in other forks. These basic operations represent the so-called “so-
cial life” of code sharing on GitHub.?” They can also simply ignore the
parent repository and give a new context to their fork. In fact other fea-

tures offered by both the git software and GitHub itself, and the ability

8 Matthew Fuller, Andrew Goffey, Adrian Mackenzie, Richard Mills and Stuart
Sharples, “Big Diff, Granularity, Incoherence, and Production in the Github Soft-
ware Repository,” in Memory in Motion: Archives, Technology, and the Social, ed.
Ina Blom, Trond Lundemo, and Eivind Ressaak (Amsterdam: Amsterdam University
Press, 2017), 89.

8 Tbid.

87 See Adrian Mackenzie, “What Is an Important Event? 175 Million Events and Count-
ing. Notes for Public Lecture at It University of Copenhagen” (https://github.com/
metacommunities/metacommunities.git, March 5, 2014).

350

to track all these, could have the potential to provide a rich “account of
how people move through code,’®® and generally speaking the reason that
leads scholar Adrian Mackenzie to argue that “software today is less like
a machine, a system or even an assemblage, and more like a crowd”®® But
given everything discussed so far in this thesis—from the proto free and
open source era of computational culture, its strange modes of organisa-
tion and the UNIX fellowship, and of course the Cambrian explosion of
free and open things triggered by free culture—this analogy to the crowd
could easily apply since the early days of code sharing. In fact, private
forks and exotic code-hosting platforms are nothing new, but GitHub
contributes an authoritative centralisation and forced visibility of such
practices. The shift is not so much from machine to crowd, but—and ex-
panding on Mackenzie’s urban metaphors—it is the transition from rural
coding communities to the coding city crowd, through the means of the
Gemeinschaft emulation originally triggered by the use of free and open
source techno-legal templates. But more importantly here, this crowd
is in fact trapped. While GitHub provides very effective, and easy to
use, tools to facilitate the self-organisation of communities around one
single repository, there is a catch. To permit the construction of extra
systems on top of the git DVCS the repositories are forked within the
GitHub platform, thus revealing the irony of centralising a completely

distributed system into one giant... sandbox, where almost one half of

8 Adrian Mackenzie, “Code-Traffic : Code Repositories, Crowds and Urban Life,” in
Code and the City, ed. Rob Kitchin and Sung-Yueh Perng (London: Routledge, 2016),
86.

8 Tbid., 87.

351

the repositories are forks from other repositories.”

While networked decentralisation has been perceived as an empower-
ing instrument, as best exemplified with Dmytri Kleiner’s Peer-to-Peer
Communism vs Client-Server Capitalist State,”! the techno-legal mecha-
nisms that permit such decentralisation have been greatly overlooked. In
retrospect, it is clear that when P2P rose to popularity, it first appeared to
provide a lightweight, democratic, and nomadic alternative to the client-
server models of transactions and capitalisation, but that was however
not counting without how this new model could also be embedded into
other systems of different nature. This is once again very well illustrated
with GitHub and shows that no matter what is the topology of network
labour, there will always be opportunities to create overlapping struc-
tures to control and capitalise it. In the case of GitHub, this capitali-
sation is moved to another level. What has escaped from the control
of macro-liberal/micro-communal groups is now collected by this plat-
form, a new form of browser-assisted massive local file system source
control a la CLEAR-CASTER, a shared and collaborative file-sharing app
for programmers in the age of Internet turned into an Operating Sys-
tem,”? worse, a download site.”® Similarly, it is possible to witness how

the yielding effect suggested by Raymond, can be captured by a platform

% Adrian Mackenzie, “Large Numbers: Imitative Fluxes in the Data-
Material Imaginary. Notes for Material, Visual and Digital Cul-
ture Research Seminars 2015-16, University ~ College London”

(https://github.com/metacommunities/metacommunities.git, February 1, 2014).
Kleiner, The Telekommunist Manifesto.

In reference to Tim O’Reilly, “The State of the Internet Operating System,” 2010,
http://radar.oreilly.com/2010/03/state-of-internet-operating-system.html.
Mackenzie, “What Is an Important Event? 175 Million Events and Counting.”

91
92

93

352

like GitHub. It does not matter what the yield is and it certainly is a vari-
able element, but while the use of software can escape GitHub as easily as
with a clone command, its context cannot be extracted from the different
additional social and technological features that GitHub has built around
the popular DVCS. In the process the licenses are replaced with Terms
of Services,’* and the employees and founders of the platform, whose
core components are strategically closed source,’” are the ones to decide
what projects and behaviours are acceptable. They establish a nearly feu-
dal meta-model of governance on top of the communities and groups
they host, occasionally taking advantage of their overarching landlord
position, thanks to the newly-acquired virtuous property of forking, to
directly tap for their own benefit into the gigantic pool of disposable code
they host, regardless of the damage this creates to independent program-

mers turned sharecroppers.”

% A recent study in 2013, even if it was essentially simple data scraping, showed that
out of nearly 1.7 million code repositories on GitHub, less than 15% had a license.
See Neil McAllister, “Study: Most Projects on Github Not Open Source Licensed,” The
Register, 2013, http://www .theregister.co.uk/2013/04/18/github_licensing_study/.

% Tom Preston-Werner, “Open Source (Almost) Everything’ 2011, http://tom.
preston-werner.com/2011/11/22/open-source-everything html.

% For an example of such abuse see Aymeric Mansoux, “Fork Workers,” in Are You Being
Served?, ed. Anne Laforet, Marloes de Valk, Madeleine Aktypi, An Mertens, Femke
Snelting, Michaela Lakova, and Reni Hoffmuller (Brussels: Constant, 2014).

353

