
1

Permacomputing is a more sustainable

approach to computer and network technology

inspired by permaculture.

In a time where computing epitomizes

industrial waste, permacomputing encourages

a more sustainable approach, maximizing

hardware lifespans, minimizing energy use

and focussing on the use of already

available computational resources.

Permacomputing asks the question whether it

is possible to rethink computing in the

same way as permaculture rethinks

agriculture. Permaculture is the science

and practice of creating semi-permanent

ecosystems of nature. The resilience of any

such ecosystem is equal to its diversity

and interconnectedness. Permaculture design

is a system of assembling conceptual,

material and strategic components in a

pattern which functions to benefit life in

all its forms. It seeks to provide a

sustainable and secure place for living

things on this earth.

At first it may seems paradoxical to

connect permaculture and computation.

Indeed, an extractive technology that

depends on a wasteful use of finite

resources can hardly be permanent.

Therefore, by making this connection, what

we are truly asking is whether or not there

can be a place for computer and network

technology in a world where humans

contribute to the well-being of the

biosphere rather than destroy it? And if

yes, how?

Permacomputing wants to imagine such a

place and take steps towards it. It is

therefore both utopian and practical. We

want to find out how we can practice good

relations with the Earth by learning from

ecological systems to leverage and re-

center existing technologies and practices.

A radical reduction of wastefulness is a

fundamental aspect of it: maximize the

hardware lifespans, minimize the energy

use. And this is not just about a set of

https://hub.xpub.nl/sandbot/permacomputing-zine/

permacomputing/principles

2

technical problems to be fixed —the

attitudes also need a radical

turn. Understandability is

aesthetics, virtual does not mean

immaterial and doing things with

less is not a return to the past.

We want to investigate what a

permacomputing way of life could

be, and what sort of

transformative computational

culture and aesthetics it could

bring forward.

These design principles have
been modeled after those of

permaculture. These are primarily

design/practice principles and not

philosophical ones, so feel free

to disagree with them or refactor

them.

https://hub.xpub.nl/sandbot/permacomputing-zine/permaculture/

3

This is the ethical basis that permacomputing

builds on. It refers to the permacultural

principles of "care for the earth" and "care for

people", but can be thought of as the basic axiom

for all choices.

Create low-power systems that strengthens the

biosphere and use the wide-area network sparingly.

Minimize the use of artificial energy, fossil fuels

and mineral resources. Don't create systems that

obfuscate waste.

Production of new computing hardware consumes a

lot of energy and resources. Therefore, we need to

maximize the lifespans of hardware components –
especially microchips, because of their low

material ?recyclability.

 Respect the quirks and peculiarities of what

already exists and ?repair what can be

repaired.

 Create new devices from salvaged components.

 Support local time-sharing within your

community in order to avoid buying redundant

stuff.

 Push the industry towards Planned longevity.
 Design for disassembly.

https://hub.xpub.nl/sandbot/permacomputing-zine/Jevons_paradox/
https://hub.xpub.nl/sandbot/permacomputing-zine/lifespan_maximization/
https://hub.xpub.nl/sandbot/permacomputing-zine/IC/
https://hub.xpub.nl/ikiwiki.cgi?do=create&from=Principles&page=recyclability
https://hub.xpub.nl/ikiwiki.cgi?do=create&from=Principles&page=repair
https://hub.xpub.nl/sandbot/permacomputing-zine/salvage_computing/
https://hub.xpub.nl/sandbot/permacomputing-zine/time-sharing/
https://hub.xpub.nl/sandbot/permacomputing-zine/planned_longevity/
https://hub.xpub.nl/sandbot/permacomputing-zine/Design_for_disassembly/

permacomputing/principles

4

Small systems are more likely to have

small hardware and energy requirements, as

well as high understandability. They are

easier to understand, manage, ?refactor and ?

repurpose.

 Dependencies (including hardware

requirements and whatever external

software/libraries the program requires)

should also be kept low.

 Avoid pseudosimplicity such as user

interfaces that hide their operation from

the user.

 Accumulate wisdom and experience rather
than codebase.

 Low complexity is beautiful. This is also
relevant to e.g. visual media where "high

quality" is often thought to stem from

high resolutions and large bitrates.

 Human-scale: a reasonable level of

complexity for a computing system is that

it can be entirely understood by a single

person (from the low-level hardware

details to the application-level quirks).

 Scalability (upwards) is essential only

if there is an actual and justifiable

need to scale up; down-scalability may

often be more relevant.

 Abundance thinking. If the computing
capacity feels too limited for anything,

you can rethink it from the point of view

of abundance (e.g. by taking yourself

fifty years back in time): tens of

kilobytes of memory, thousands of

operations per second – think about all

the possibilities!

https://hub.xpub.nl/ikiwiki.cgi?do=create&from=Principles&page=refactoring
https://hub.xpub.nl/ikiwiki.cgi?do=create&from=Principles&page=repurpose
https://hub.xpub.nl/sandbot/permacomputing-zine/dependency/
https://hub.xpub.nl/sandbot/permacomputing-zine/pseudosimplicity/
https://hub.xpub.nl/sandbot/permacomputing-zine/human-scale/
https://hub.xpub.nl/sandbot/permacomputing-zine/scalability/

5

It is a good practice to keep everything as

resilient and collapse-tolerant as possible even if

you don't believe in these scenarios.

 While being resilient and building on a solid

ground, be open to positive and utopian

possibilities. Experiment with new ideas and

have grand visions.

 Design for descent.

https://hub.xpub.nl/sandbot/permacomputing-zine/design_for_descent/

permacomputing/principles

6

Flexibility means that a system can be

used in a vast array of purposes, including

ones it was not primarily designed for.

Flexibility complements smallness and

simplicity. In an ideal and elegant system,

the three factors (smallness, simplicity and

flexibility) support each other.

If it is possible to imagine all the

possible use cases when designing a system,

the design may very well be too simple and/or

too inflexible. Smallness, simplicity and

flexibility are also part of the "small, sharp

tools" ideal of the Unix command line. Here

the key to flexibility is the ability to

creatively combine small tools that do small,

individual things.

 Computing technology in general is very

flexible because of its programmability.

Programming and programmability should be

supported and encouraged everywhere, and

artificial lock-ins that prevent

(re)programming should be broken.

 Design systems you can gradually modify

and improve while running them.

https://hub.xpub.nl/sandbot/permacomputing-zine/Unix/

7

It is good to experiment with new ideas,

concepts and languages, but depending on them is

usually a bad idea. Appreciate mature technologies,

clear ideas and well-understood theories when

building something that is intended to last.

 Avoid unreliable dependencies, especially as

hard (non-optional) dependencies. If you can't

avoid them (in case of software), put them

available in the same place where you have

your program available.

 It is possible to support several target

platforms. In case of lasting programs, one of

these should be a bedrock platform that does

not change and therefore does not cause

software rot.

 Don't take anything for granted. Especially
don't expect the infrastructure such as the

power grid and global networking to continue

working indefinitely.

 You may also read this as "grow roots to a

solid ground". Learn things that last, enrich

your local tradition, know the history of

everything.

https://hub.xpub.nl/sandbot/permacomputing-zine/dependency/
https://hub.xpub.nl/sandbot/permacomputing-zine/bedrock_platform/
https://hub.xpub.nl/sandbot/permacomputing-zine/software_rot/

permacomputing/principles

8

Computers were invented to assist people

in their cognitive processes. "Intelligence

amplification" was a good goal, but

intelligence may also be used narrowly and

blindly. It may therefore be a better idea to

amplify awareness.

 Awareness means awareness of whatever is

concretely going on in the

world/environment but also awareness of

how things work and how they situate in

their contexts (cultural, historical,

biological etc).

 You don't need to twiddle with everything

in order to understand it. Yin hacking

emphasizes observation.

 It may also often be a good idea to

amplify the computer's awareness of its

physical surroundings with things like

sensors.

https://hub.xpub.nl/sandbot/permacomputing-zine/balance_of_opposites/

9

As an extension of "amplify awareness": Don't

hide information!

 Keep everything open, modifiable and flexible.

 Share your source code and design

philosophies.

 State visualization: Make the computer
visualize/auralize its internal state as well

as whatever it knows about the state of its

physical environment. Regard this

visualization/auralization as a background

landscape: facilitate observation but don't

steal the attention. Also, don't use too much

computing resources for this (updating a full-

screen background landscape tens of times per

second is a total overkill).

https://hub.xpub.nl/sandbot/permacomputing-zine/FLOSS/

permacomputing/principles

10

Computing systems should adapt to the

changes in their operating environments

(especially in relation to energy and heat).

24/7 availability of all parts of the system

should not be required, and neither should a

constant operating performance (e.g.

networking speed).

 In a long term, software and hardware

systems should not get obsoleted by

changing needs and conditions. New

software can be written even for old

computers, old software can be modifed to

respond to new needs, and new devices can

be built from old components. Avoid both

software rot and retrocomputing.

https://hub.xpub.nl/sandbot/permacomputing-zine/software_rot/
https://hub.xpub.nl/sandbot/permacomputing-zine/retro/

11

Be part of your local energy/matter

circulations, ecosystems and cultures. Cherish

locality, avoid centralization. Strengthen the

local roots of the technology you use and create.

While operating locally and at present, be

aware of the entire world-wide context your work

takes place in. This includes the historical

context several decades to the past and the future.

Understanding the past(s) is the key for

envisioning the possible futures.

 Nothing is "universal". Even computers,

"universal calculators" that can be readapted

to any task, are full of quirks that stem from

the cultures that created them. Don't take

them as the only way things can be, or as the

most "rational" or "advanced" way.

 Every system, no matter how ubiquitous or

"universal" it is, is only a tiny speckle in a

huge ocean of possibilities. Try to understand

the entire possibility space in addition to

the individual speckles you have concrete

experience about.

 Appreciate diversity, avoid monoculture. But
remember that ?standards also have an

important place.

 Strict utilitarianism impoverishes.

Uselessness also has an important place, so

appreciate it.

 You may also read this principle as: There is
a place of everything. Nothing is obsolete or
irrelevant. Even if they lose their original

meaning, programmable systems may be readapted

to new purposes they were not originally

designed for. Think about technology as a

rhizome rather than a "highway of progress and

constant obsolescence".

 There is a place for both slow and fast, both

gradual and one-shot processes. Don't look at

all things through the same glasses.

https://hub.xpub.nl/sandbot/permacomputing-zine/decentralization/
https://hub.xpub.nl/sandbot/permacomputing-zine/Technological_diversity/
https://hub.xpub.nl/sandbot/permacomputing-zine/monoculture/
https://hub.xpub.nl/ikiwiki.cgi?do=create&from=Principles&page=standard

permacomputing/principles

12

This fanzine was made scraping the

Permacomputing principles wiki page:

https://permacomputing.net/Principles/

Its distribution is free. You are invited to

read, copy and share it with others.

Typefaces: Monospace and Basteleur-moon.

ZineCamp * 2022

